IncrementalKSTest#
- class frouros.detectors.data_drift.streaming.statistical_test.IncrementalKSTest(window_size: int, callbacks: BaseCallbackStreaming | list[BaseCallbackStreaming] | None = None)#
IncrementalKSTest (Incremental Kolmogorov-Smirnov test) [dos2016fast] detector.
- Parameters:
window_size (int) – window size value
callbacks (Optional[Union[BaseCallbackStreaming, list[BaseCallbackStreaming]]]) – callbacks, defaults to None
- References:
[dos2016fast]dos Reis, Denis Moreira, et al. “Fast unsupervised online drift detection using incremental kolmogorov-smirnov test.” Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
- Example:
>>> from frouros.detectors.data_drift import IncrementalKSTest >>> import numpy as np >>> np.random.seed(seed=31) >>> X = np.random.normal(loc=0, scale=1, size=100) >>> Y = np.random.normal(loc=1, scale=1, size=100) >>> detector = IncrementalKSTest(window_size=10) >>> _ = detector.fit(X=X) >>> for sample in Y: ... test, _ = detector.update(value=sample) ... if test is not None: ... print(test.statistic, test.p_value)
- property window_size: int#
Window size property.
- Returns:
window size
- Return type:
int
- property X_ref: ndarray | None#
Reference data property.
- Returns:
reference data
- Return type:
Optional[numpy.ndarray]
- property callbacks: list[BaseCallback] | None#
Callbacks property.
- Returns:
callbacks
- Return type:
Optional[list[BaseCallback]]
- property data_type: BaseDataType#
Data type property.
- Returns:
data type
- Return type:
BaseDataType
- fit(X: ndarray, **kwargs: Any) dict[str, Any] #
Fit detector.
- Parameters:
X (numpy.ndarray) – feature data
kwargs (Any) – additional fit parameters
- Returns:
callbacks logs
- Return type:
dict[str, Any]
- reset() None #
Reset method.
- property statistical_type: BaseStatisticalType#
Statistical type property.
- Returns:
statistical type
- Return type:
BaseStatisticalType
- update(value: int | float) Tuple[BaseResult | None, dict[str, Any]] #
Update detector.
- Parameters:
value (Union[int, float]) – value to use to update the detector
- Returns:
update result and callbacks logs
- Return type:
Tuple[Optional[BaseResult], dict[str, Any]]