ChiSquareTest#
- class frouros.detectors.data_drift.batch.statistical_test.ChiSquareTest(callbacks: BaseCallbackBatch | list[BaseCallbackBatch] | None = None)#
ChiSquareTest (Chi-square test) [pearson1900x] detector.
- Parameters:
callbacks (Optional[Union[BaseCallbackBatch, list[BaseCallbackBatch]]]) – callbacks, defaults to None
- Note:
Passing additional arguments to scipy.stats.chi2_contingency can be done using
compare()
kwargs.
- References:
[pearson1900x]Pearson, Karl. “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50.302 (1900): 157-175.
- Example:
>>> from frouros.detectors.data_drift import ChiSquareTest >>> import numpy as np >>> np.random.seed(seed=31) >>> X = np.random.choice(a=[0, 1], size=100, p=[0.5, 0.5]) >>> Y = np.random.choice(a=[0, 1], size=100, p=[0.8, 0.2]) >>> detector = ChiSquareTest() >>> _ = detector.fit(X=X) >>> detector.compare(X=Y)[0] StatisticalResult(statistic=9.81474665685192, p_value=0.0017311812135839511)
- property X_ref: ndarray | None#
Reference data property.
- Returns:
reference data
- Return type:
Optional[numpy.ndarray]
- property callbacks: list[BaseCallback] | None#
Callbacks property.
- Returns:
callbacks
- Return type:
Optional[list[BaseCallback]]
- compare(X: ndarray, **kwargs: Any) Tuple[ndarray, dict[str, Any]] #
Compare values.
- Parameters:
X (numpy.ndarray) – test data
- Returns:
compare result and callbacks logs
- Return type:
Tuple[numpy.ndarray, dict[str, Any]]
- property data_type: BaseDataType#
Data type property.
- Returns:
data type
- Return type:
BaseDataType
- fit(X: ndarray, **kwargs: Any) dict[str, Any] #
Fit detector.
- Parameters:
X (numpy.ndarray) – feature data
kwargs (Any) – additional fit parameters
- Returns:
callbacks logs
- Return type:
dict[str, Any]
- reset() None #
Reset method.
- property statistical_type: BaseStatisticalType#
Statistical type property.
- Returns:
statistical type
- Return type:
BaseStatisticalType