AndersonDarlingTest#

class frouros.detectors.data_drift.batch.statistical_test.AndersonDarlingTest(callbacks: BaseCallbackBatch | list[BaseCallbackBatch] | None = None)#

Anderson-Darling test [scholz1987k] detector.

Parameters:

callbacks (Optional[Union[BaseCallbackBatch, list[BaseCallbackBatch]]]) – callbacks, defaults to None

Note:

References:

[scholz1987k]

Scholz, Fritz W., and Michael A. Stephens. “K-sample Anderson–Darling tests.” Journal of the American Statistical Association 82.399 (1987): 918-924.

Example:

>>> from frouros.detectors.data_drift import AndersonDarlingTest
>>> import numpy as np
>>> np.random.seed(seed=31)
>>> X = np.random.normal(loc=0, scale=1, size=100)
>>> Y = np.random.normal(loc=1, scale=1, size=100)
>>> detector = AndersonDarlingTest()
>>> _ = detector.fit(X=X)
>>> detector.compare(X=Y)[0]
StatisticalResult(statistic=32.40316586267425, p_value=0.001)
property X_ref: ndarray | None#

Reference data property.

Returns:

reference data

Return type:

Optional[numpy.ndarray]

property callbacks: list[BaseCallback] | None#

Callbacks property.

Returns:

callbacks

Return type:

Optional[list[BaseCallback]]

compare(X: ndarray, **kwargs: Any) Tuple[ndarray, dict[str, Any]]#

Compare values.

Parameters:

X (numpy.ndarray) – test data

Returns:

compare result and callbacks logs

Return type:

Tuple[numpy.ndarray, dict[str, Any]]

property data_type: BaseDataType#

Data type property.

Returns:

data type

Return type:

BaseDataType

fit(X: ndarray, **kwargs: Any) dict[str, Any]#

Fit detector.

Parameters:
  • X (numpy.ndarray) – feature data

  • kwargs (Any) – additional fit parameters

Returns:

callbacks logs

Return type:

dict[str, Any]

reset() None#

Reset method.

property statistical_type: BaseStatisticalType#

Statistical type property.

Returns:

statistical type

Return type:

BaseStatisticalType